Title: Influence of different phytoremediation on soil microbial diversity and community composition in saline-alkaline land

Abstract

Soil salinization is one main environmental factor restricting plant growth and agricultural prod-uctivity. However, phytoremediation is one of the important means to improve saline-alkali soil by planting halophytes or salt-tolerant plants. In order to study whether there are differences among soil microorganisms in different phytoremediation, the effects of four plants, including alfalfa (MX), oil sunflower (YK), maize (YM) and ryegrass (HMC) on soil physicochemical properties, enzyme activity and microbial community diversity and composition were investigated using 16S rRNA bacterial and ITS fungal gene-based method and others methods in this study and the relationships between microbial community structure and soil physicochemical properties, enzyme activity were analyzed. The results showed that all plants treatments significantly decreased pH, TS (total saltinity) and BD (bulk density), while increased OM (organic matter), TN (total nitrogen), AN (available nitrogen), TP (total phosphorus), AP (available phosphorus), TK (total potassium) and TPOR (total porosity), and the number of nitrite bacteria reduced by planting at the same time. Except for YM, other treatments significantly increased the number of nitrifying and denitrifying bacteria compared with CK, while only YK increased that of fungi. dditionally, all plants increased the activity of nitrite reductase and decreased that of urease. More interestingly, plants treatments shifted microbial community compositions, and only YM significantly decreased the bacterial diversity and increased the fungal diversity. edundancy analysis suggested that TK, pH, BD, TS, AN, OM and nitrite reductase, lignin peroxidase were the key environmental factors that shaped the bacterial community structure, while that of fungi was mainly driven by OM, nitrite reductase, urease and lignin peroxidase. The results indicated that MX and YM are the best choice for remediation of saline-alkali soil. These data can provide certain theoretical basis for the further restoration of saline-alkali land.

Biography

Fengxia Li, Female, Dr. , Researcher, works in the Institute of agricultural resources and environment of Ningxia Academy of agricultural and Forestry Sciences. She mainly engaged in the research on soil improvement and utilization of saline alkali land, soil microbial processes and functions. She visited the Grassland Research Center of the Academy of Agricultural Sciences of New Zealand for one year from October 2013 to October 2014, did research on "the impact of global climate change on grassland ecology and the functional genes of microorganisms involved in nitrogen cycle ". In recent years, She has presided over 15 projects including two National Natural Science Foundation project of China, Ningxia Natural Science Foundation project, the key research and development project of Ningxia Hui Autonomous Region, the the Ningxia returned overseas students' innovation team project, etc. She won three third prizes for scientific and technological progress of the autonomous region, 10 patents were authorized, more than 30 articles were published. She wrote one book and edited four books with colleagues.

+1 (873) 371-5878