Title: PPG-based human identification using Mel-frequency cepstral coefficients and neural networks

Abstract

One of the known problems in security systems is to identify persons based on certain signatures. Biometrics have been adopted in security systems to identify persons based on some physiological or behavioral characteristics that they own. Photoplethysmography (PPG) is a physiological signal that is used to describe the volumetric change of blood flow in peripherals with heartbeats. The PPG signals gained some interest of researchers in the last few years, because they are used non-invasively, and they are easily captured by the emerging IoT sensors from fingertips. This paper presents a PPG-based approach to identify persons using a neural network classifier. Firstly, PPG signals are captured from a number of persons using IoT sensors. Then, unique features are extracted from captured PPG signals by estimating the Mel-Frequency Cepstral Coefficients (MFCCs). These features are fed into an Artificial Neural Network (ANN) to be trained first and used for identification of persons. A dataset of PPG signals for 35 healthy persons was collected to test the performance of the proposed approach. Experimental results demonstrate 100% and 98.07% accuracy levels using the hold-out method and the 10-fold cross-validation method, respectively.

+1 (506) 909-0537